25.04.2023թ-Գլանի,կոնի և գնդի մակերևույթների մակերեսների հաշվումը
Տեսություն՝
Գլան
Գիտենք, որ գլանը առաջանում է ուղղանկյան՝ իր կողմերից մեկի շուրջ պտտումից:
Պտտելով ներքևի AA1O1O ուղղանկյունը իր կողմերից որևէ մեկի, օրինակ՝ OO1-ի շուրջ, ստանում ենք պատկերված գլանը:
OO1 հատվածը կոչվում է գլանի բարձրություն, AA1-ը և BB1-ը՝ ծնորդներ:
Պտտման ընթացքում առաջացած երկու շրջանները կոչվում են գլանի հիմքեր:
Գլանի բարձրությունով անցնող հարթության և գլանի ընդհանուր մասը կոչվում է գլանի առանցքային հատույթ: Գլանի առանցքային հատույթը ուղղանկյուն է:
Վերևի նկարում դա AA1B1B ուղղանկյունն է:
Գլանի կողմնային մակերևույթի բացվածքը ևս ուղղանկյուն է:
Այդ ուղղանկյան կողմերից մեկը հիմքի շրջանագծի երկարությունն է, իսկ մյուսը՝ գլանի բարձրությունը: Ուրեմն, գլանի կողմնային մակերևույթի (կամ գլանային մակերևույթի) մակերեսը հավասար է՝
Sկողմն=2πRH
Եթե սրան գումարենք երկու հիմքերի մակերեսները, ապա կստանանք գլանի լրիվ մակերևույթի մակերեսը՝
S=Sկողմն+2Sհիմք=2πRH+2πR2
Եթե փակագծերից դուրս բերենք ընդհանուր արտադրիչները, կստանանք՝
S=2πR⋅(H+R)
Կոն
Գիտենք, որ կոնը կարելի է ստանալ՝ պտտելով ուղղանկյուն եռանկյունը իր էջերից որևէ մեկի շուրջ:
PO հատվածը կոչվում է կոնի բարձրություն:
Կոնի առանցքային հատույթը, որն անցնում է նրա գագաթով, հանդիսանում է PA և PB սրունքներով հավասարասրուն եռանկյուն: PA-ն և PB-ն կոչվում են կոնի ծնորդներ և նշանակվում են l տառով:
Եռանկյան պտույտից առաջացած O կենտրոնով շրջանը կոչվում է կոնի հիմք:
Կոնի շառավիղ կոչվում է նրա հիմքի R=OA=OB շառավիղը:
Կոնի կողմնային մակերևույթի բացվածքը շրջանային սեկտոր է:
Այդ սեկտորի շառավիղը հավասար է կոնի ծնորդին՝ l-ի, իսկ աղեղի երկարությունը հավասար է կոնի հիմքի շրջանագծի երկարությանը՝ 2πR
Ինչպես գիտենք, շրջանային սեկտորի մակերեսը հավասար է նրա շառավղի և աղեղի երկարության արտադրյալի կեսին:
Ստանում ենք՝
2πR⋅l/2=πRl
Այսպիսով, կոնի կողմնային մակերևույթի (կոնային մակերևույթի) մակերեսը հաշվում են Sկողմն=πRl բանաձևով:
Լրիվ մակերևույթի մակերեսը ստանալու համար պետք է գումարել հիմքի շրջանի մակերեսը՝
S=Sկողմն+Sհիմք=πRl+πR2
Փակագծերից դուրս բերելով ընդհանուր արտադրիչները, ստանում ենք՝
S=πR⋅(l+R)
Գնդային մակերևույթի մակերեսը
Գունդը ստացվում է կիսաշրջանի կամ շրջանի պտույտի միջոցով՝ իր AB տրամագծի շուրջ:
Գնդի մակերևույթը (գնդային մակերևույթը) կոչվում է գնդոլորտ (սֆերա):
Գնդոլորտը ստացվում է կիսաշրջանագծի կամ շրջանագծի պտույտի միջոցով:
Գնդոլորտին են պատկանում գնդի բոլոր այն կետերը, որոնց հեռավորությունը գնդի O կենտրոնից հավասար է R շառավղին:
OA-ն, OB-ն և OC-ն, կամ ցանկացած այլ հատված, որը միացնում է գնդոլորտի կետը գնդի կենտրոնի հետ կոչվում է գնդի շառավիղ:
Գնդի երկու կետեր միացնող հատվածը, որն անցնում է գնդի կենտրոնով, կոչվում է գնդի տրամագիծ: Վերևի նկարում դա AB հատվածն է:
Կենտրոնով անցնող գնդի հատույթը կոչվում է մեծ շրջան, իսկ գնդոլորտի հատույթը՝ մեծ շրջանագիծ:
Ի տարբերություն գլանային և կոնային մակերևույթների, գնդային մակերևույթը հնարավոր չէ փռել այնպես, որ ստացվի հարթ պատկեր: Այս հարցին դեռ կանդրադառնանք ավագ դպրոցում:
Այստեղ միայն նշենք, որ R շառավղով գնդային մակերևույթի մակերեսը հաշվում են հետևյալ բանաձևով՝
19.04.2023թ-Շրջանագծի երկարությունը և շրջանի մակերեսը
Տեսություն՝
Շրջանագծի երկարությունը
Յուրաքանչյուր շրջանագծի երկարության և նրա տրամագծի հարաբերությունը միևնույն թիվն է բոլոր շրջանագծերի համար:
Այդ թիվն ընդունված է նշանակել հունարեն π («պի») տառով: Այդ թվում ստորակետից հետո կան անվերջ թվով թվանշաններ, որոնց հերթականությունը չի կրկնվում:
Հիշենք, որ այդպիսի թվերը կոչվում են իռացիոնալ թվեր:
Մեր ժամանակներում, հաշվողական տեխնոլոգիաների զարգացման արդյունքում, հաջողվում է հաշվել բազմաթիվ թվանշաններ՝ ստորակետից հետո: Կախված պահանջվող ճշտությունից, π թիվը կլորացնում են մինչև ամբողջը՝ π≈3
Ամենահաճախը օգտագործվում է π թվի կլորացված արժեքը հարյուրավորների ճշտությամբ՝ π≈3,14:
Հետաքրքիր է, որ մարտի (3-րդ ամիսը) 14-ին աշխարհում ոչ պաշտոնապես նշվում է π թվի օրը և անցկացվում են մաթեմատիկական մրցույթներ ու այլ հետաքրքիր իրադարձություններ:
Շրջանագծի երկարությունը ընդունված է նշանակել C տառով: Հիշենք, որ շրջանագծի տրամագիծը (շառավղի կրկնապատիկը) նշանակում են՝ D=2R
Հետևաբար, շրջանագծի երկարությունը հաշվում են C=π⋅D կամ C=2π⋅R բանաձևերով:
Քանի որ ամբողջ շրջանագծի երկարությունը հավասար է C=2π⋅R, ապա 1° աստիճանի աղեղի երկարությունը կլինի՝ 2πR/360°=πR/180°
Հետևաբար, α աստիճանային չափով ∪AB=l աղեղի երկարությունը կլինի՝ l=πR/180°⋅α