27.09.2021-29.09.2021թթ.-Իռացիոնալ անհավասարումներ
Պարզագույն իռացիոնալ անհավասարումներԵթե անհավասարման անհայտը գտնվում է քառակուսի արմատի նշանի տակ, ապա այդպիսի անհավասարումը անվանում են իռացիոնալ:
Սովորենք լուծել պարզագույն իռացիոնալ հավասարումները: Պարզագույն իռացիոնալ անհավասարումներն են՝ √x<a և √x>a, որտեղ a -ն տրված իրական թիվ է: Դիտարկենք √x<a անհավասարումը:
1) Եթե a≤0, ապա թվաբանական քառակուսի արմատի սահմանման համաձայն, անհավասարումը լուծում չունի:
2) Եթե a>0, ապա պետք է անհավասարումը բարձրացնել քառակուսի և պահանջել, որ արմատն իմաստ ունենա (արմատատակ թիվը լինի ոչ բացասական): Դիտարկենք √x>a անհավասարումը:
1) Եթե a<0, ապա ձախից ոչ բացասական թիվ է, իսկ աջից՝ բացասական: Անհավասարումը միշտ ճիշտ է, եթե արմատն իմաստ ունի:Հետևաբար այս դեպքում անհավասարման պատասխանը ԹԱԲ -ն է՝ [0;+∞)
2) Եթե a≥0, ապա պետք է անհավասարումը բարձրացնել քառակուսի և պահանջել, որ արմատն իմաստ ունենա (արմատատակ թիվը լինի ոչ բացասական):
√x≤a անհավասարման դեպքում գալիս ենք հետևյալ եզրակացություններին:
1) Եթե a<0, լուծում չկա:
2) Եթե a≥0, ապա x∈[0;a2]
√x≥a անհավասարման դեպքում գալիս ենք հետևյալ եզրակացություններին:
1) Եթե a<0, պատասխանը ԹԱԲ -ն է՝ [0;+∞)
2) Եթե a≥0, ապա x∈[a2;+∞)
Առաջադրանքներ՝ 21-27